Abstract

In this study, an attempt has been made to understand the organization and association of fibrinogen (Fg) in solvent environment induced by viscogens such as 1-ethyl 3-methyl imidazolium ethyl sulfate (IL-emes), Ficoll, and Trehalose. The author observed that Fg in IL-emes adsorbed on solid surface shows higher β-sheet conformation. Shear viscosity measured using quartz crystal microbalance, for Fg in IL-emes was highest with a corresponding higher adsorbed mass 3.26 μg/cm(2). Associated assemblies of the protein at the liquid/air interface were monitored with changes in surface tension and were used to calculate work of adhesion. Changes in work of adhesion were used as a tool to measure the adsorption of Fg to solid surfaces in presence of viscogens and highest adsorption was observed for hydrophilic surfaces. Scanning electron microscopy images show Fg in trehalose forms elongated bead like structures implying organization of the protein at the interface. Crowding in the solvent environment induced by viscogens can slow down organization of Fg, leading to macromolecular assemblies near the interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call