Abstract

We study the sub-band-gap high harmonic generation (HHG) in a methylammonium lead trichloride single crystal. Anisotropy in the crystal orientation dependence of the high harmonic yield is observed, and the yield varies substantially with the electric field strength of the midinfrared laser pulse used for excitation. Our real-time ab initio simulations reproduce the experimental results well and also show that the HHG is independent of the interband decoherence time. Based on a microscopic analysis of the intraband current, we reveal that the orientation dependence of the HHG in this perovskite semiconductor is governed by the virtual band population, rather than the anharmonicity of the electronic band structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.