Abstract

A nonadiabatic quantum dynamic model has been developed to study the process of electron emission from a low-work-function metal surface. The process is initiated by scattering a highly vibrationally excited NO molecule from a surface composed of a Cs layer covering a Ru crystal. The model addresses the increasing quantum yield of the electron emission as a function of the molecular vibrational excitation and incident kinetic energy. The reaction mechanism is identified as a long-range harpooning electron transfer to a molecular ion which is then accelerated toward the surface. Upon impact, the molecular ion emits its excess electron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.