Abstract

Efforts to treat chronic venous insufficiency have focused on the development of prosthetic venous valves. The role of prosthetic valve-to-vessel size matching has not been determined. The purpose of this investigation was to assess the effect of size mismatching on venous valve function and to establish a mismatch limit that affects valve hemodynamic performance and venous wall stress to improve future valve designs and implants. Flow dynamics of prosthetic venous valves were studied invitro using a pulse duplicator flow loop. Valve performance based on flow rate and pressure measurements was determined at oversizing ratios ranging from 4.2% to 25%. Valve open area ratios at different size mismatching ratios were investigated by image analysis. Finally, a wall stress analysis was used to determine the magnitude of circumferential (hoop) stress in the venous wall at various degrees of oversizing. Our findings indicate that valve regurgitate volume, closing time, and pressure difference across the valve are significantly elevated at mismatch ratios greater than ∼15%. This is supported by increases in regurgitate velocity and open area relative to valves tested at near-nominal diameters. At this degree of size mismatch, the wall stress is increased by a factor of two to three times relative to physiologic pressures. These findings establish a relationship between valve size matching and valve hemodynamic performance, including vessel wall stress, which should be considered in future valve implants. The size of the prosthetic valve should be within 15% of maximum vein size to optimize venous valve hemodynamic performance and to minimize the hoop wall stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.