Abstract

We investigate the physical role of various scale-similarity models in the stabilized mixed model [K. Abe, “An improved anisotropy-resolving subgrid-scale model with the aid of a scale-similarity modeling concept,” Int. J. Heat Fluid Flow 39, 42 (2013); M. Inagaki and K. Abe, “An improved anisotropy-resolving subgrid-scale model for flows in laminar–turbulent transition region,” Int. J. Heat Fluid Flow 64, 137 (2017)] and evaluate their performance in turbulent channel flows. Among various models in the present study, the original model combined with the scale-similarity model for the subgrid-scale (SGS)-Reynolds term yields the best prediction for the anisotropy of the grid-scale (GS) velocity fluctuations and the SGS stress, even in coarse grid resolutions. Moreover, it successfully predicts large intensities of the spectra close to the cut-off scale in accordance with the filtered direct numerical simulation, whereas other models predict a rapid decay of the spectra in the low-wavelength region. To investigate the behavior of the models close to the cut-off scale, we analyze the budget equation for the GS Reynolds stress spectrum. The result shows that the scale-similarity model for the SGS-Reynolds term plays a role in the enhancement of the wall-normal velocity fluctuation close to the cut-off scale. Thereby, it activates turbulence close to the cut-off scale, leading to a reproduction of the proper streak structures observed in wall-bounded turbulent flows. The reproduction of velocity fluctuations close to the cut-off scale and turbulent structures is a key element for further development of SGS models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call