Abstract

Bipolar disorder (BD) is associated with abnormalities of the ventral anterior cingulate cortex (vACC) and its connection sites, including the amygdala, which are key components of a corticolimbic neural system that subserves emotional regulation. Decreased functional connectivity from the vACC to the amygdala in healthy individuals is associated with the short 's' allele--as opposed to the long 'l' allele--of a well-known serotonin transporter promoter polymorphism (5-HTTLPR, locus SLC6A4), as are features of BD. This study tests the hypothesis that the s allele influences dysfunction in the vACC-amygdala neural system in BD. A total of 30 euthymic individuals with BD (20 s carriers, 10 ll) and 48 healthy comparison (HC) participants (34 s, 14 ll) participated in an event-related functional magnetic resonance imaging scan while processing fearful, happy, or neutral faces. During fear and happy face processing, vACC activation was significantly lower in the BD compared to the HC group, and in s carriers compared to ll individuals within both the HC and BD groups, such that BD s carriers exhibited the greatest magnitude of vACC dysfunction. No significant differences were detected in amygdala activation. The findings suggest that the 5-HTTLPR s allele may contribute to a trait-related, genetically derived, neurobiological subgroup within BD characterized by prominent vACC dysfunction. Future treatment may be optimized for this BD subgroup by targeting the serotonergic system and the vACC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.