Abstract

Improving efficient electrocatalysts (ECs) for hydrogen generation through water splitting is of significant interest in tackling the upcoming energy crisis. Sustainable hydrogen generation is the primary prerequisite to realizing the future hydrogen economy. This work examines the electrocatalytic activity of hydrothermally prepared vanadium doped MnCo spinel oxide microspheres (MC), MnVxCo2−xO4 (Vx-MnCo MC, where x ≤ 0.4) in the HER (hydrogen evolution reaction) process. Magnetization measurements demonstrated a paramagnetic (at high temperatures) to a ferrimagnetic (at low temperatures) transition below the Curie temperature (Tc) in all the samples. The magnetization is found to intensify with the rising vanadium content of MCs. The optimized catalyst Vx-MnCo MCs (x = 0.3) outperformed other prepared ECs with a Tafel slope of 84 mV/dec, a low onset potential of 78.9 mV, and a low overpotential of 85.9 mV at a current density of 10 mA/cm2, respectively. The significantly improved HER performance of hydrothermally synthesized Vx-MnCo MCs (x = 0.3) is principally attributable to many exposed active sites, accelerated electron transport at the EC/electrolyte interface, and remarkable electron spectroscopy for chemical analysis (ECSA) value was found ~ 11.4 cm2. Moreover, the Vx-MnCo MCs (x = 0.3) electrode exhibited outstanding electrocatalytic stability after exposure to 1000 cyclic voltametric cycles and 36 h of chronoamperometric testing. Our results suggest a feasible route for developing earth-abundant transition metal oxide-based EC as a superior electrode for future water electrolysis applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.