Abstract

Over the last decade, a diverse spectrum of vanadium compounds has arisen as anti-inflammatory therapeutic metallodrugs targeting various diseases. Recent studies have demonstrated that select well-defined vanadium species are involved in many immune-driven molecular mechanisms that regulate and influence immune responses. In addition, advances in cell immunotherapy have relied on the use of metallodrugs to create a “safe,” highly regulated, environment for optimal control of immune response. Emerging findings include optimal regulation of B/T cell signaling and expression of immune suppressive or anti-inflammatory cytokines, critical for immune cell effector functions. Furthermore, in-depth perusals have explored NF-κB and Toll-like receptor signaling mechanisms in order to enhance adaptive immune responses and promote recruitment or conversion of inflammatory cells to immunodeficient tissues. Consequently, well-defined vanadium metallodrugs, poised to access and resensitize the immune microenvironment, interact with various biomolecular targets, such as B cells, T cells, interleukin markers, and transcription factors, thereby influencing and affecting immune signaling. A synthetically formulated and structure-based (bio)chemical reactivity account of vanadoforms emerges as a plausible strategy for designing drugs characterized by selectivity and specificity, with respect to the cellular molecular targets intimately linked to immune responses, thereby giving rise to a challenging field linked to the development of immune system vanadodrugs.

Highlights

  • In the past decades, several metallodrugs have been developed to target human pathophysiologies, with platinum, copper, vanadium, gold, ruthenium, and yttrium, among select metal ions, serving as the basis of such pharmaceuticals [1, 2]

  • Overall, specified vanadium complex species are involved in key mechanisms of immune regulation and can be used as promising metallodrugs toward future immunotherapy

  • Significant merit emerges toward further studies attempting to (a) design new vanadodrugs and (b) decipher the potential role that vanadium species have in interactions with immune system modulators as well as other transcription factors influencing immune signaling

Read more

Summary

Introduction

Several metallodrugs have been developed to target human pathophysiologies, with platinum, copper, vanadium, gold, ruthenium, and yttrium, among select metal ions, serving as the basis of such pharmaceuticals [1, 2]. Involvement of a biogenic metal ion, such as vanadium, in immune-regulating mechanisms, including immune suppression and inflammation downregulation, formulates a well-defined platform for research into future effective and efficient immunotherapy [12, 13]. In this respect, the elaborated account presents new facets of the merit that vanadium holds as a metallodrug in immunotherapy, based on currently held views and knowledge emerging from ongoing research in the fields of (bio)chemical and medical interest (Figure 1). The various forms of vanadium far employed in immune-related pathologies (a) necessitate an orderly account of its (bio)chemical activity at the cellular and molecular level, (b) signify a structure-based elaboration of its involvement in immune system interactions and responses, and (c) point out significant factors entering future design of new vanadodrugs capable of atoxically, selectively, and targeting cellular molecular loci, intimately influencing immunophysiology and contributing to immunopharmaceuticals in a host of relevant diseases (Figure 2)

The Role of Vanadium in B Cell Signaling
Regulation of T Cell Signaling
C22 C11
Shaping Cytokine-Interleukin Response
Targeting the NF-κB Signaling Pathway
Subverting Toll-Like Receptor Signaling
Role in Inflammation-Related Immunopathology
Pharmacotoxicology Mechanisms
Normal epithelia
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call