Abstract

There is a great deal of interest in attributing the high critical temperatures of the cuprates to either the proximity of the Fermi level to a van Hove singularity or to structure of the superconducting pairing potential in momentum space far from the Fermi surface. We examine these ideas by calculating the critical temperature Tc for model Einstein-phonon- and spin-fluctuation-mediated superconductors within both the standard, Fermi-surface-restricted Eliashberg theory and the exact mean field theory, which accounts for the full momentum structure of the pairing potential and the energy dependence of the density of states. By using two models of spin-fluctuation-mediated pairing in the cuprates, we demonstrate that our results are independent of the details of the dynamical susceptibility, which is taken to be the pairing potential. We also compare these two models against available neutron scattering data, since these data provide the most direct constraints on the susceptibility. We conclude that the van Hove singularity does not drastically alter Tc from its value when the density of states is constant and that the effect of momentum structure is significant but secondary in importance to that of the energy dependence in the density of states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.