Abstract

The role of valence electrons for formation of glassy alloys was investigated as a function of their valence electron concentration (VEC). The glass transition temperature T g of 121 kinds of glassy alloys can be expressed as a linear function of VEC: T g = 131VEC + 65 (2.3 < VEC < 5.2) for metal/metal bonding type and T g = −240VEC + 2408 (6.6 < VEC < 9.1) for metal/metalloid bonding one. The thermal stability of the glassy alloys increases by the unsynchronized resonance of electron-pair bonds, and decreases due to increase in covalency by metalloid elements, with an increasing number of valence electrons, respectively. Ab initio molecular orbital calculations of the optimized structures for the Mg monoanion clusters warranted application of the valence electron rule, which is based on a valence electron contribution associated with spd or spf hybridization for glass formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.