Abstract

We have studied the effects of vacancies on the structural, electronic and magnetic properties of zigzag-edged graphene nanoribbons (ZGNRs). Our calculations were carried out using an abinitio density functional pseudopotential computational method combined with the generalized gradient approximation for the exchange-correlation functional. The equilibrium geometries, electronic charge spin density distributions, electronic band structures, and magnetic moments were examined in the presence of single vacancy and double vacancies. Structural optimization showed that vacancies induce substantial structural changes in ZGNRs. We found that introducing vacancies into ZGNR changes the spatial distribution of neighbor atoms, particularly those located around the vacancies. Our calculations showed that the vacancies have significant effect on the magnetization of ZGNR. The calculations showed that the changes in the structural geometry, the electronic structure and the magnetization of ZGNR depend on the location of the vacancies with respect to the ribbon edges. These results suggest that vacancy defects can be used to modify the electronic and the magnetic properties of ZGNR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.