Abstract
Photon-induced fragmentation of a full set of chlorinated methanes (CH3Cl, CH2Cl2, CHCl3, CCl4) has been investigated both experimentally and computationally. Using synchrotron radiation and electron-ion coincidence measurements, the dissociation processes were studied after chlorine 2p electron excitation. Experimental evidence for CH3Cl and CH2Cl2 contains unique features suggesting that fast dissociation processes take place. By contrast, CHCl3 and CCl4 molecules do not contain the same features, hinting that they experience alternative mechanisms for dissociation and charge migration. Computational work indicates differing rates of charge movement after the core-excitation, which can be used to explain the differences observed experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.