Abstract
Here we provide experimental evidence that ionizing radiation induces inhibitory tyrosine phosphorylation of the p34cdc2 kinase in human leukemic B-cell precursors. Herbimycin A markedly reduced tyrosine phosphorylation of p34cdc2 in irradiated leukemic B-cell precursors, thereby preventing radiation-induced cell cycle arrest at the G2-M transition checkpoint. Thus, tyrosine phosphorylation is directly responsible for the inactivation of p34cdc2 in irradiated human leukemic B-cell precursors and activation of protein tyrosine kinases is a proximal and mandatory step in radiation-induced G2-arrest arrest at the G2-M checkpoint. Human WEE1 kinase isolated from unirradiated or irradiated leukemic B-cell precursors had minimal tyrosine kinase activity towards p34cdc2. We detected no increase of human WEE1 kinase activity after radiation of leukemic B-cell precursors, as measured by (a) autophosphorylation, (b) tyrosine phosphorylation of a synthetic peptide derived from the p34cdc2 amino-terminal region or (c) recombinant human p34cdc2-cyclin B complex. Thus the signaling pathway leading to inhibitory tyrosine phosphorylation of p34cdc2 and G2-arrest in irradiated human leukemic B-cell precursors functions independent of p49 WEE1 HU and enzymes which augment the tyrosine kinase activity of p49 WEE 1HU.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.