Abstract
Three types of mutations were introduced into the platelet-derived growth factor (PDGF) receptor to cause a loss of PDGF-stimulated tyrosine kinase activity: (i) a point mutation of the ATP-binding site, (ii) a deletion of the carboxyl-terminal region, and (iii) replacement of the membrane-spanning sequences by analogous transmembrane sequences of other receptors. Transfectants expressing mutated receptors bind, 125I-labeled PDGF with a high affinity but had no PDGF-sensitive tyrosine kinase activity, phosphatidylinositol turnover, increase in the intracellular calcium concentration, change in cellular pH, or stimulation of DNA synthesis. However, PDGF-induced receptor down regulation was normal in the mutant cells. These results indicate that the transmembrane sequence has a specific signal-transducing function other than merely serving as a membrane anchor and that the receptor kinase activity is necessary for most responses to PDGF but is not required for receptor down regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.