Abstract

Bdellovibrio bacteriovorus, as an obligate predator of Gram-negative bacteria, requires contact with the surface of a prey cell in order to initiate the life cycle. After attachment, the predator penetrates the prey cell outer membrane and enters the periplasmic space. Attack phase cells of B. bacteriovorus have polar Type IV pili that are required for predation. In other bacteria, these pili have the ability to extend and retract via the PilT protein. B. bacteriovorus has two pilT genes, pilT1 and pilT2, that have been implicated in the invasion process. Markerless in-frame deletion mutants were constructed in a prey-independent mutant to assess the role of PilT1 and PilT2 in the life cycle. When predation was assessed using liquid cocultures, all mutants produced bdelloplasts of Escherichia coli. These results demonstrated that PilT1 and PilT2 are not required for invasion of prey cells. Predation of the mutants on biofilms of E. coli was also assessed. Wild type B. bacteriovorus 109JA and the pilT1 mutant decreased the mass of the biofilm to 35.4% and 27.9% respectively. The pilT1pilT2 mutant was able to prey on the biofilm, albeit less efficiently with 50.2% of the biofilm remaining. The pilT2 mutant was unable to disrupt the biofilm, leaving 92.5% of the original biofilm after predation. The lack of PilT2 function may impede the ability of B. bacteriovorus to move in the extracellular polymeric matrix and find a prey cell. The role of Type IV pili in the life cycle of B. bacteriovorus is thus for initial recognition of and attachment to a prey cell in liquid cocultures, and possibly for movement within the matrix of a biofilm.

Highlights

  • Bdellovibrio bacteriovorus is a Gram-negative obligate predator of other Gram-negative bacteria

  • B. bacteriovorus will irreversibly attach to the prey cell and begin to secrete hydrolytic enzymes to create a pore in the outer membrane and the peptidoglycan of the prey [1]

  • The pilT2 gene is not found within an operon and is not close to any other genes involved in TFP assembly, regulation or function

Read more

Summary

Introduction

Bdellovibrio bacteriovorus is a Gram-negative obligate predator of other Gram-negative bacteria. The cells are small, vibroid in shape and highly motile via a single polar sheathed flagellum. Their life cycle consist of two stages, a motile attack phase and an intraperiplasmic growth phase. B. bacteriovorus will irreversibly attach to the prey cell and begin to secrete hydrolytic enzymes to create a pore in the outer membrane and the peptidoglycan of the prey [1]. The pore is resealed and an osmotically stable ‘bdelloplast’ is formed. This signifies the end of the attack phase and the beginning of the growth phase

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call