Abstract

Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes Q fever, a life-threatening zoonotic disease. C. burnetii replicates within an acidified parasitophorous vacuole derived from the host lysosome. The ability of C. burnetii to replicate and achieve successful intracellular life in the cell cytosol is vastly dependent on the Dot/Icm type 4B secretion system (T4SSB). Although several T4SSB effector proteins have been shown to be important for C. burnetii virulence and intracellular replication, the role of the icmE protein in the host-C. burnetii interaction has not been investigated. In this study, we generated a C. burnetii Nine Mile Phase II (NMII) mutant library and identified 146 transposon mutants with a single transposon insertion. Transposon mutagenesis screening revealed that disruption of icmE gene resulted in the attenuation of C. burnetii NMII virulence in SCID mice. ELISA analysis indicated that the levels of pro-inflammatory cytokines, including interleukin-1β, IFN-γ, TNF-α, and IL-12p70, in serum from Tn::icmE mutant-infected SCID mice were significantly lower than those in serum from wild-type (WT) NMII-infected mice. Additionally, Tn::icmE mutant bacteria were unable to replicate in mouse bone marrow-derived macrophages (MBMDM) and human macrophage-like cells (THP-1). Immunoblotting results showed that the Tn::icmE mutant failed to activate inflammasome components such as IL-1β, caspase 1, and gasdermin-D in THP-1 macrophages. Collectively, these results suggest that the icmE protein may play a vital role in C. burnetii virulence, intracellular replication, and activation of inflammasome mediators during NMII infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call