Abstract
We have investigated the influence of the two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistors (HEMTs) on their reliability under ON-state conditions. Devices stressed in the ON-state showed a faster decrease in the maximum drain current (IDmax) compared to identical devices stressed in the OFF-state with a comparable electric field and temperature. Scanning electron microscope (SEM) images of ON-state stressed devices showed pit formation at locations away from the gate-edge in the drain-gate access region. Cross-sectional transmission electron microscope (TEM) images also showed dark features at the AlGaN/SiN interface away from the gate edge. Electron energy loss spectroscopy (EELS) analysis of the dark features indicated the presence of gallium, aluminum and oxygen. These dark features correlate with pits observed in the SEM micrographs. It is proposed that in addition to causing joule heating, energetic electrons in the 2D electron gas contribute to device degradation by promoting electrochemical oxidation of the AlGaN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.