Abstract

Two arginine residues (368-369) of Cry1Ab and Cry1Ac were mutated to alanine, glutamic acid and lysine by site-directed mutagenesis. Insecticidal activities of the mutant toxins on Manduca sexta and Lymantria dispar larvae were examined. Cry1Ac mutant toxins (c)RR-AA and (c)RR-EE and Cry1Ab mutant toxins (b)RR-AA and (b)RR-EE showed great reductions in toxicity against both insects. In contrast, conservatively changed (c)RR-KK and (b)RR-KK mutants did not alter toxicity to either insect. Binding assays with brush border membrane vesicles (BBMVs) prepared from L. dispar midguts demonstrated that (c)RR-AA, (c)RR-EE, (b)RR-AA and (b)RR-EE bound with lower affinities compared with their respective wild-type toxins. To M. sexta BBMVs, (c)RR-AA and (c)RR-EE showed great reductions in BBMV binding. However, (b)RR-AA and (b)RR-EE did not alter BBMV competition patterns, despite their reduced toxicity. Further binding assays were performed with aminopeptidase N (APN) purified from L. dispar and M. sexta BBMVs using surface plasmon resonance (BIAcore). Direct correlation between toxicity and APN binding was observed for the mutant toxins using this technique. The inconsistency between BBMV and APN binding data with Cry1Ab to M. sexta suggests the possibility of a different Cry1Ab toxin-binding mechanism or the importance of another receptor in M. sexta.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.