Abstract
BackgroundTransient receptor potential (TRP) ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) mediate the development of lung injury and inflammation. This study investigated the role and mechanism of the TRPA1/TRPV1 pathway in airway inflammation and bronchial hyperresponsiveness (BHR) induced by acute ozone exposure.MethodsC57BL/6 mice (8–10 weeks) were intraperitoneally injected with phosphate buffered saline (PBS), A967079 (TRPA1 inhibitor) or AMG9810 (TRPV1 inhibitor) 1 h before or after ozone exposure (2.5 ppm, 3 h). BHR, cell counts in bronchoalveolar lavage (BAL) fluid, oxidative stress biomarkers, inflammatory cytokines, TRPA1 and TPRV1 protein levels, mitochondrial dynamics- and mitophagy-related protein levels, and activities of mitochondrial respiratory chain (MRC) in lung were measured.ResultsThe preventive treatment effect was similar to the therapeutic treatment effect. Both A967079 and AMG9810 intervention suppressed BHR, inflammatory cytokines, total BAL fluid cells, malondialdehyde (MDA) levels and inflammatory cytokines mRNA including Substance P (SP), Keratinocyte-Derived Chemokine (KC), interleukin-18 (IL-18) and chemokine (C-X-C motif) ligand 8 (CXCL8) expression, and enhanced reduced glutathione (GSH)/oxidized glutathione (GSSG) levels compared with ozone-exposed mice. A967079 and AMG9810 intervention inhibited dynamin-related protein (DRP1), mitochondrial fission factor (MFF), Parkinson protein 2 E3 ubiquitin protein ligase (PARK2) and Sequestosome 1 (SQSTM1)/p62 expression, increased Optic atrophy 1 (OPA1), mitofusin 2 (MFN2) and PTEN-induced putative kinase 1 (PINK1) expression, and up-regulated the activities of MRC complex III and V in lung tissue.ConclusionsThe results show that both TRPA1 and TRPV1 pathways are involved in acute ozone exposure-induced airway inflammation and BHR and influence oxidative stress, mitochondrial quality control and MRC activity, which could be a potential target for clinical therapy of respiratory diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.