Abstract

Both biomimetic superhydrophobic surfaces and biomimetic slippery liquid-infused porous surfaces (SLIPSs) have been developed as potential alternatives for solving the problem of biofouling. Herein, a facile method was used to construct superhydrophobic surfaces and liquid infused porous surfaces on stainless steels for antifouling applications. The nano-structures were formed by electrostatic attraction between polycations and negatively charged SiO2 nanoparticles, providing a structural basis for superhydrophobic surfaces and liquid infused surfaces. Biofouling testing suggested excellent antifouling performances of the liquid infused porous surfaces by decreasing the adhesion of Chlorella pyrenoidosa by 93% and of Phaeodactylum tricornutum by 71%. The thermodynamic interpretation further indicated that the air layer captured by the superhydrophobic surfaces and the lubricant layer entrapped by the liquid infused porous surfaces played the dominant role in their antifouling performances. The inspiring results might show great potential for liquid infused porous surfaces in antifouling applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.