Abstract

Transparent Exopolymer Particles (TEP) has a known crucial role in vertical fluxes of carbon in the ocean and has been intensively studied in the last decade. Nevertheless, few studies have considered horizontal fluxes of TEP. These fluxes arise prominently between estuaries and the coast, where its importance is associated to the predominant horizontal transport. This is due both to the low density of the TEP agglomerate generated in low density waters of continental origin, and to the fact that the main component of the advective transport at estuarine regions is the horizontal one. In this study, the significance of TEP in the particulate matter exchange between estuary and coast was analyzed in the estuarine lagoon system of Cananéia-Iguape (southeast coast of Brazil). TEP, total seston (TS), organic seston (OS) and chlorophyll a (Chl.a) were analyzed over complete tidal cycles, during the dry and rainy seasons both at spring and neap tides. Horizontal fluxes and net transport rates of these variables were also calculated. TEP concentrations (max. 4991 μg Xeq/L) were almost one order of magnitude higher during the rainy season. TEP horizontal transport rates as high as 1.8 g Xeq. m/s were observed at the northern inlet of the system. In terms of particulate carbon, it represents 32.7 g TEP-C m/s or 4% of the OS transport rates. Our study quantifies the advective transport of TEP and their importance in particulate matter exchange between a subtropical estuarine system and the adjacent coastal region. Our results contribute to the knowledge of exopolimer particles dynamics in subtropical estuarine systems, and their relationship to phyto-plankton biomass and particulate matter.

Highlights

  • The ecological role of the carbonic exopolymers produced by phytoplankton and bacterioplankton, the Transparent Exopolymer Particles (TEP), has been recently emphasized in the biogeochemical cycle [1]

  • Water temperature was higher in the rainy season than in the dry season in both inlets (Table 1)

  • TEP concentrations in the present study showed that estuaries can be a significant source of carbon like polymers to coastal region

Read more

Summary

Introduction

The ecological role of the carbonic exopolymers produced by phytoplankton and bacterioplankton, the Transparent Exopolymer Particles (TEP), has been recently emphasized in the biogeochemical cycle [1]. TEP form the organic matrix of marine snow, enhancing vertical fluxes of organic matter [4,7,8] and carbon export from the surface [7,9]. These vertical fluxes has been recently studied, both in field and laboratory experiment to determine their significance in the carbon budget dynamic, [3,4,6]. TEP have been related to the termination of diatom spring blooms in temperate waters, since they increase aggregate formation [10,11,12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call