Abstract
DNA vaccination results in remarkably strong, broad-based immune responses to the encoded proteins and it is a simple and effective method of inducing cytotoxic T-lymphocyte (CTL) responses. Bone marrow-derived cells can take up and present exogenous antigenic protein liberated by transfected fibroblasts or myoblasts after the injection of such cells. In addition, dendritic cells can carry the injected plasmid DNA, supporting the hypothesis that dendritic cells can be directly transfected. It is, however, unclear from the current data what proportion of the cytotoxic immune response is initiated by the transfer of protein compared to that resulting from direct transfection of professional antigen presenting cells. This question is addressed here by using a matched series of plasmid DNA vectors expressing the wild-type or several mutant forms of HBsAg that are secretion-defective or severely truncated. The data indicate that neither HBsAg particle formation nor its secretion or liberation plays a significant role in the development of the cytotoxic immune response. The results argue that direct transfection of bone marrow-derived cells is the major, and possibly the only, mechanism used for priming of naive CTL precursors directed against the HBsAg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.