Abstract

Several agroforestry systems prevail in different agro-ecological zones of Pakistan, and cover a remarkable area of 19.3 million hectares. They not only play an important role in slowing down CO2 emissions, but also contribute to mitigating climate change. However, in many regions, the relevant effect of agroforestry systems on overall carbon (C) stock and their reliance on various factors are quite unidentified. This study was planned to assess the biomass accumulation and C stocks of different commonly practiced agroforestry systems (boundary, bund, scattered, agri-horticulture) and their constituent land use types (tree + cropland) through a non-destructive approach (allometric equations) in a semi-arid region of Punjab, Pakistan. The results showed that the highest plant biomass (87.12 t ha−1) increased by 46%, 17%, 78%, and 339%, and C stock (42.77 t ha−1) increased by 49.51%, 20%, 82%, and 361% in the boundary planting system compared to the bund, scattered, agri-horti and sole cropland, respectively. The soil organic carbon (SOC) stock at all three depths, 0–15 cm, 15–30 cm & 30–45 cm, was found in the following order: boundary planting system > bund planting system > agri-horti system > scattered planting system > agricultural system, with a maximum in the boundary planting system and minimum in the sole cropping system at all three depths. Overall, the total C stock of the ecosystem’s vegetation + soil C (0–30 cm) in the forested area was 275 t ha−1, equating to 37 t ha−1 in the agricultural system alone. Our results highlighted that agroforestry systems have the highest potential for C sequestration. We suggest that research and investment in agroforestry systems can be a successful way for Pakistan to achieve some of its climate change mitigation goals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call