Abstract
The bulk-boundary correspondence guarantees topologically protected edge states in a two-dimensional topological superconductor. Unlike in topological insulators, these edge states are, however, not connected to a quantized (spin) current as the electron number is not conserved in a Bogolyubov--de Gennes Hamiltonian. Still, edge currents are in general present. Here we use the two-dimensional Rashba system as an example to systematically analyze the effect symmetry reductions have on the order-parameter mixing and the edge properties in a superconductor of Altland-Zirnbauer class DIII (time-reversal-symmetry preserving) and D (time-reversal-symmetry breaking). In particular, we employ both Ginzburg-Landau and microscopic modeling to analyze the bulk superconducting properties and edge currents appearing in a strip geometry. We find edge (spin) currents independent of bulk topology and associated topological edge states which evolve continuously even when going through a phase transition into a topological state. Our findings emphasize the importance of symmetry over topology for the understanding of the nonquantized edge currents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.