Abstract
Development of chronic lung allograft dysfunction involves various alloimmune-independent insults including those mediated by Toll-like receptor (TLR) signaling, which is known to activate alloimmune responses. We hypothesized that TLR signaling may also contribute to the activation of fibroblasts and promoting allograft airway fibrosis. Mouse orthotopic tracheal transplants were conducted between major histocompatibility complex (MHC)-mismatched Balb/c donor and wild-type C3H or C3H-derived TLR4 mutant recipients (nonfunctional TLR4). Immunohistochemistry on day 21 showed significantly smaller alpha-smooth muscle actin (α-SMA)-positive areas in TLR4 mutant recipients than wild-type recipients (P = .01). No difference was found for CD3+ T-cell infiltration. Proliferation of alloreactive T cells derived from the recipient spleen showed no difference between TLR4 mutant and wild-type recipients in a mixed lymphocyte reaction. The effect of TLR4 signaling was examined in primary pulmonary fibroblast cultures both with lipopolysaccharide (LPS) and transforming growth factor (TGF)-β1. Stimulation with LPS significantly increased expression of α-SMA mRNA in wild-type fibroblasts cultured with TGF-β1 compared with the control without LPS (P = .001). Taken together, these findings suggest disruption of TLR signaling leads to reduced activation of fibroblasts without affecting T-cell infiltration and proliferation in this model. TLR4-mediated activation of fibroblasts may be a potentially important mechanism of allograft remodeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.