Abstract
Objective According to modern views, the differences in the clinical course of chronic obstructive pulmonary disease (COPD) are associated with certain types of T-helper (Th) immune response. Recent data have shown that toll-like receptor 2 (TLR2) is involved in the development of Th immune response. However, TLR2-mediated regulation of Th subpopulation balance in COPD needs to be elucidated. The aim of our work is to determine the mechanisms of TLR2-mediated regulation of Th immune response in COPD of varying severity. Methods The study included 323 smokers/ex-smokers with stable COPD (GOLD I, GOLD II, and GOLD III) and 97 healthy nonsmokers (control group). Serum levels of Th1 (TNF-α and IFN-γ), Th2 (IL-4), Th17 (IL-6 and IL-17A), Treg (IL-10) cytokines, and the percentage of peripheral blood Th cells expressing TLR2 (CD4+CD282+) were assessed by flow cytometry. Serum concentrations of IL-21 (Th17) and TGF-β1 (Treg) were measured using the ELISA method. The predominant Th cytokine profile in serum was determined by calculating the ratios between levels of Th1 and Th17 cytokines. Spearman's correlation test was performed. Results Patients with COPD GOLD II and III with Th1 and Th17 cytokine profiles exhibited an increase in the percentage of CD4+CD282+ cells compared to the control group. In COPD GOLD I–III, positive correlations between CD4+CD282+ cell frequency and Th17 cytokine levels (IL-6, IL-17A, and IL-21) were found. In COPD GOLD I, IL-10 concentration was negatively correlated with the percentages of studied cells; in COPD GOLD II, a positive correlation between these parameters was noted. Conclusions Enhanced TLR2 expression on CD4+ cells shifts cytokine profile toward Th17 phenotype that plays a crucial role in COPD progression. The level of TLR2 expression on peripheral blood CD4+ cells may be considered as a biomarker for diagnosing and predicting the progression of COPD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.