Abstract

BackgroundIntestinal ischemia/reperfusion (I/R) injury is a life-threatening complication that leads to inflammation and remote organ damage. However, the underlying mechanism is not yet fully understood. Toll-like receptor 5 (TLR5) is highly expressed in mucosa and recognizes flagellin, the main component of the bacterial flagella. Here, we investigated the role of TLR5 in inflammation and tissue damage after intestinal I/R injury using TLR5-deficient mice. Methods and resultsIntestinal levels of TLR5 mRNA and flagellin protein were elevated in wild-type mice subjected to intestinal I/R. Although TLR5 deficiency had no effect on intestinal flagellin levels, it significantly attenuated intestinal injury and inflammatory responses after intestinal I/R. TLR5 deficiency also markedly improved survival in mice after intestinal I/R injury. In wild-type mice, intestinal I/R injury induced remote organ damage, particularly in the lung, which was attenuated by TLR5 deficiency. Furthermore, TLR5 deficiency prevented lung inflammatory responses and vascular permeability after intestinal I/R injury. ConclusionThese findings demonstrate a novel role of TLR5 and provide new insights into the mechanism underlying inflammation and tissue damage after intestinal I/R injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.