Abstract

The aim of the present study was to explore the role of toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor (NF)-κB signaling in the contrast-induced injury of renal tubular epithelial cells, and to investigate the potential mechanisms. HK-2 cells cultured in vitro were randomly divided into six groups as follows: i) The blank group; ii) the iohexol group; iii) the NF-κB RNAi group (NF-κB siRNA + iohexol); iv) the TLR4 RNAi group (TLR4 siRNA + iohexol); v) the NF-κB blocker group (PDTC + iohexol); and vi) the TLR4 blocker group (CLI-095 + iohexol). The expression of the TLR4/MyD88/NF-κB signaling pathway proteins was detected by reverse transcription-quantitative (RT-q)PCR and western blot analysis, and the cellular proliferation rate was determined using the Cell Counting Kit-8 assay. The mRNA expression levels of the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were also detected using RT-qPCR, and apoptosis was assessed by flow cytometry and western blotting to detect apoptosis-associated proteins (caspase-3, caspase-9 and cleaved caspase-9). Compared with the blank group, the apoptotic rates and the expression levels of TLR4, MyD88, NF-κB, caspase-3, cleaved caspase-9, TNF-α, IL-1β and IL-6 were upregulated in the iohexol group (P<0.001). However, when TLR4 or NF-κB were blocked or silenced, these effects were reversed (P<0.001). Collectively, the results of the present study indicated that TLR4/MyD88/NF-κB signaling is involved in the contrast-induced injury of renal tubular epithelial cells by inducing inflammation and apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call