Abstract

The role of tissue transglutaminase (tTG), a calcium-dependent and GTP-modulated enzyme, in apoptotic death induced by GTP depletion in islet β-cells was investigated. GTP depletion and apoptosis were induced by mycophenolic acid (MPA) in insulin-secreting HIT-T15 cells. MPA treatment increased in situ tTG activity (but not protein levels) in a dose- and time-dependent manner in parallel with the induction of apoptosis. MPA-induced increases of both tTG activity and apoptosis were entirely blocked by co-provision of guanosine but not adenosine. MPA-enhanced tTG activity could be substantially reduced by co-exposure to monodansylcadaverine or putrescine (tTG inhibitors), and largely blocked by lowering free Ca 2+ concentrations in the culture medium. However, MPA-induced cell death was either not changed or was only slightly reduced under these conditions. By contrast, a pan-caspase inhibitor (Z-VAD-FMK) entirely prevented apoptosis induced by MPA, but did not block the enhanced tTG activity, indicating that GTP depletion can induce apoptosis and activate tTG either independently or as part of a cascade of events involving caspases. Importantly, the morphological changes accompanying apoptosis could be markedly prevented by tTG inhibitors. These findings suggest that the effect of the marked increase in tTG activity in GTP depletion-induced apoptosis of insulin-secreting cells may be restricted to some terminal morphological changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call