Abstract

Tissue kallikrein (TK), a major kinin-forming enzyme, is synthesized in the heart and arteries. We tested the hypothesis that TK plays a protective role in myocardial ischemia by performing ischemia-reperfusion (IR) injury, with and without ischemic preconditioning (IPC) or ACE inhibitor (ramiprilat) pretreatment, in vivo in littermate wild-type (WT) or TK-deficient (TK-/-) mice. IR induced similar infarcts in WT and TK-/-. IPC reduced infarct size by 65% in WT, and by 40% in TK-/- (P<0.05, TK-/- vs WT). Ramiprilat also reduced infarct size by 29% in WT, but in TK-/- its effect was completely suppressed. Pretreatment of WT with a B2, but not a B1, kinin receptor antagonist reproduced the effects of TK deficiency. However, B2 receptor-deficient mice (B2-/-) unexpectedly responded to IPC or ramiprilat like WT mice. But pretreatment of the B2-/- mice with a B1 antagonist suppressed the cardioprotective effects of IPC and ramiprilat. In B2-/-, B1 receptor gene expression was constitutively high. In WT and TK-/- mice, both B2 and B1 mRNA levels increased several fold during IR, and even more during IPC+IR. Thus TK and the B2 receptor play a critical role in the cardioprotection afforded by two experimental maneuvers of potential clinical relevance, IPC and ACE inhibition, during ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.