Abstract

BackgroundTendon injury is one of the orthopedic conditions poses with a significant clinical challenge to both the surgeons and patients. The major limitations to manage these injuries are poor healing response and development of peritendinous adhesions in the injured area. This study investigated the effectiveness of a novel collagen implant on tendon healing in rabbits.ResultsSeventy five mature White New-Zealand rabbits were divided into treated (n = 55) and control (n = 20) groups. The left Achilles tendon was completely transected and 2 cm excised. The defects of the treated animals were filled with collagen implants and repaired with sutures, but in control rabbits the defects were sutured similarly but the gap was left untreated. Changes in the injured and normal contralateral tendons were assessed weekly by measuring the diameter, temperature and bioelectrical characteristics of the injured area. Clinical examination was done and scored. Among the treated animals, small pilot groups were euthanized at 5, 10, 15, 20, 30, 40 and 60 (n = 5 at each time interval) and the remainder (n = 20) and the control animals at 120 days post injury (DPI). The lesions of all animals were examined at macroscopic and microscopic levels and the dry matter content, water delivery and water uptake characteristics of the lesions and normal contralateral tendons of both groups were analyzed at 120 DPI.No sign of rejection was seen in the treated lesions. The collagen implant was invaded by the inflammatory cells at the inflammatory phase, followed by fibroplasia phase in which remnant of the collagen implant were still present while no inflammatory reaction could be seen in the lesions. However, the collagen implant was completely absorbed in the remodeling phase and the newly regenerated tendinous tissue filled the gap. Compared to the controls, the treated lesions showed improved tissue alignment and less peritendinous adhesion, muscle atrophy and fibrosis. They also showed significantly better clinical scoring, indices for water uptake and water absorption, and bioelectrical characteristics than the controls.ConclusionThis novel collagen implant was biodegradable, biocompatible and possibly could be considered as a substitute for auto and allografts in clinical practice in near future.

Highlights

  • Tendon injury is one of the orthopedic conditions poses with a significant clinical challenge to both the surgeons and patients

  • In vitro results Collagen purity Collagen extract contained two main α- chains (α1 and α2) and one β chain with very little contamination of other proteins. This suggested that collagen type I extract were pure with very little protein degradation product or other protein contamination (Figure 3A)

  • The collagen fibers were homogenously collected by the dual plate device so that they were highly aligned in the electrospun sheet (Figure 1E)

Read more

Summary

Introduction

Tendon injury is one of the orthopedic conditions poses with a significant clinical challenge to both the surgeons and patients. Tendon transplantation could be potentially a method of choice due to the large size of the harvesting autograft, the donor site morbidity is a major concern and the allografts have not been widely accepted as yet, due to many reasons such as disease transmission (e.g. HIV), rejection and ethical concerns [1,2] For these reasons, treatment of such massive tendon injuries, is a state of art and depends on the surgeon’s experience, equipment, facilitation, and condition [1,3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call