Abstract

The transport of salt, necessarily coupled with the transport of water, through porous building materials may heavily limit their durability due to possible deterioration and structural damage. Usually, the binding of salt to the pore walls is assumed to occur instantly, as soon as the salt is transported by water to a given position. We consider the advection-diffusion model of the transport and generalize it to include possible delays in the binding. Applying the Boltzmann-Matano method, we calculate the diffusion coefficient of the salt in dependence on the salt concentration and show that it increases with the rate of binding. We apply our results to an example of the chloride transport in a lime plaster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.