Abstract
The effects of hypothyroidism and hyperthyroidism upon liver microsomal ω-laurate hydroxylase activity (cytochrome P450 IV A1-dependent), peroxisome proliferation marker enzyme activities and acyl CoA oxidase (AOX) expression induced by ciprofibrate (2 mg/kg/day during 8 days) were studied in the male Wistar rat so as to clarify firstly the possible involvement of thyroid hormones in the modification of peroxisomal ciprofibrate-induced enzyme activities in relation to hepatic microsomal cytochrome P450 IV A1 induction, and secondly the possible direct effect of thyroid hormones on the gene expression of specific peroxisomal enzymes. No significant change was found in the ciprofibrateinduced ω-laurate hydroxylase activity in hypothyroid rats or in rats that had received a large dose of triiodothyronine (LT 3), suggesting that the thyroid hormone does not interfere with the peroxisome proliferation process through such an indirect mechanism. The induction by ciprofibrate [2-(4-(2-2dichlorocyclopropyl) phenoxyl-2methyl-propionic acid)] of mitochondrial α-glycerolphosphate dehydrogenase and microsomal bilirubin UDPGT was decreased about 3-fold and 1.5-fold, respectively, while the induction of peroxisomal AOX, carnitine acetyl transferase and enoyl CoA hydratase enzyme activities was decreased by 36%, 34% and 22% in thyroidectomized animals, as compared to euthyroid animals. However, no significant changes in the quantity of peroxisomal proteins and in the AOX mRNA level were noted. The administration of large doses of LT3 to normal rats decreased the peroxisomal ciprofibrate AOX enzyme induction with a marked concomitant decrease in the AOX mRNA level. This suggests that high doses of LT 3 enhance the turnover of some specific mRNAs or down regulate the peroxisome proliferator receptor. Our results also do not exclude inhibition of catabolic activity towards AOX which depends on thyroid hormone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.