Abstract

The effect of thermal energy (kBT), which has been found to play some important roles in the magnetic properties of recently developed antiferromagnetically coupled media, is described. It was observed that the thermal energy helps to obtain an antiparallel configuration of moments at remanence. Therefore, a reduction in the remnant moment–thickness product (Mrδ) is observed, even for smaller values of J (interface coupling constant) than those used in simulations that do not consider thermal energy. The magnetic viscosity measurement helps to distinguish the magnetization decay behavior of the top and bottom layers. The magnetic moments of top and bottom layers show maximum decay at different fields and the decay rates approximately scale with their thickness. Viscosity results also point out that the magnetization reversal of the bottom layer should occur in the first quadrant, in order to obtain a low noise and thermally stable media. Micromagnetic simulation was performed by including thermal effects. In that case, Mrδ reduction could be obtained for smaller values of J than in the case where thermal energy is not included in the simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.