Abstract

We use classical molecular dynamics simulations to study the interfacial resistance for heat flow between a carbon nanotube and octane liquid. We find a large value of the interfacial resistance associated with weak coupling between the rigid tube structure and the soft organic liquid. Our simulation demonstrates the key role played by the soft vibration modes in the mechanism of the heat flow. These results imply that the thermal conductivity of carbon-nanotube polymer composites and organic suspensions will be limited by the interface thermal resistance and are consistent with recent experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.