Abstract
The development of lead sulfide (PbS) colloidal quantum dot (CQD) solar cells has led to significant power conversion efficiency (PCE) improvements in recent years, with record efficiencies now over 15%. Many of the recent advances in improving PCE have focused on improving the interface between the PbS CQD active layer and the zinc oxide (ZnO) electron transport layer (ETL). Proper optimization of the ZnO ETL also increases yield, or the percentage of functioning devices per fabrication run. Simultaneous improvements in both PCE and yield will be critical as the field approaches commercialization. This review highlights recent advances in the synthesis of ZnO ETLs and discusses the impact and critical role of ZnO synthesis conditions on the PCE and yield of PbS CQD solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.