Abstract

The ability of Listeria monocytogenes, an important foodborne pathogen, to form biofilms in food processing environments leads to increased opportunity for contamination of food products, which is a major concern for food safety. In this study, the role of a complex system composed of the VirSR two-component signal transduction system (TCS) and the ATP-binding cassette (ABC) transporter VirAB in biofilm formation of L. monocytogenes EGD-e was investigated. Biofilm formation was measured using the microplate assay with crystal violet staining, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), and attachment and swarming motility were compared between strain EGD-e and its isogenic deletion mutants. Additionally, the relative expression levels of genes associated with the early steps of biofilm development in the wild-type and mutant strains were also determined by RT-qPCR. Results from microplate assay, CLSM and SEM showed that VirR is not required for biofilm formation in L. monocytogenes EGD-e. A central finding of this study is that both VirAB and VirS are essential for biofilm formation and they could function as a whole in biofilm formation of L. monocytogenes EGD-e. The results also demonstrated that both VirAB and VirS are involved in attachment, but they are not associated with swarming motility. Results from RT-qPCR showed that flaA, motA and motB were downregulated in the mutant strains ΔvirAB and ΔvirS, which could be the possible reason for reduced attachment and biofilm formation in these mutants. This study provides a better understanding of the mechanisms involved in biofilm formation of L. monocytogenes, leading to improved processes to control this biofilm-forming foodborne pathogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.