Abstract

The role of respiratory neurons located within and adjacent to the region of the ventrolateral nucleus of the tractus solitarius (vlNTS) in processing respiratory related afferent input from the vagus and superior laryngeal nerves was examined. Responses in phrenic neural discharge to electrical stimulation of the cervical vagus or superior laryngeal nerve afferents were determined before and after lesioning the vlNTS region. Studies were conducted on anesthetized, vagotomized, paralyzed and artificially ventilated cats. Arrays of 2 to 4 tungsten microelectrodes were used to record neuronal activity and for lesioning. Constant current lesions were made in the vlNTS region where respiratory neuronal discharges were recorded. The region of the vlNTS was probed with the microelectrodes and lesions made until no further respiratory related neuronal discharge could be recorded. The size and placement of lesions was determined in subsequent microscopic examination of 50 micron thick sections. Prior to making lesions, electrical stimulation of the superior laryngeal nerve (4-100 microA, 10 Hz, 0.1 ms pulse duration) elicited a short latency increase in discharge of phrenic motoneurons, primarily contralateral to the stimulated nerve. This was followed by a bilateral decrease in phrenic nerve discharge and, at higher currents, a longer latency increase in discharge. Stimulation of the vagus nerve at intensities chosen to selectively activate pulmonary stretch receptor afferent fibers produced a stimulus (current) dependent shortening of inspiratory duration. Responses were compared between measurements made immediately before and immediately after each lesion so that changes in response efficacy due to lesions per se could be distinguished from other factors, such as slight changes in the level of anesthesia over the several hours necessary in some cases to complete the lesions. Neither uni- nor bi-lateral lesions altered the efficacy with which stimulation of the vagus nerve shortened inspiratory duration. The short latency excitation of the phrenic motoneurons due to stimulation of the superior laryngeal nerve was severely attenuated by unilateral lesions of the vlNTS region ipsilateral to the stimulated nerve. Neither the bilateral inhibition nor the longer latency excitation due to superior laryngeal nerve stimulation was reduced by uni- or bi-lateral lesions of the vlNTS region.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call