Abstract

The reaction of Cp*ReCl4, [Cp*ReCl3]2, or [Cp*ReCl2]2 (Cp* = eta 5-C5Me5) with LiBH4 leads to the formation of 7-skeletal-electron-pair (7-sep) (Cp*ReH2)2(B2H3)2 (1) together with Cp*ReH6. Compound 1 is metastable and eliminates H2 at room temperature to generate 6-sep (Cp*ReH2)2B4H4 (2). The reaction of 2 with BH3.thf produces 7-sep (Cp*Re)2B7H7, a hypoelectronic cluster characterized previously. Heating of 2 with 1 atm of CO leads to 6-sep (Cp*ReCO)(Cp*ReH2)B4H4 (3). Both 2 and 3 have the same bicapped Re2B2 tetrahedral cluster core structure. Monitoring the reaction of 2 with CO at room temperature by NMR reveals the formation of a 7-sep, metastable intermediate, (Cp*ReCO)(Cp*ReH2)(B2H3)2 (4), which converts to 3 on heating. An X-ray structure determination reveals two isomeric forms (4-cis and 4-trans) in the crystallographic asymmetric unit which differ in geometry relative to the disposition of the metal ancillary ligands with respect to the Re-Re bond. The presence of these isomers in solution is corroborated by the solution NMR data and the infrared spectrum. In both isomers, the metallaborane core consists of fused B2Re2 tetrahedra sharing the Re2 fragment. On the basis of similarities in electron count and spectroscopic data, 1 also possesses the same bitetrahedral structure. The reaction of 2 with CO2(CO)8 results in the formal replacement of the four rhenium hydrides with a 4-electron CO2(CO)5 fragment, thereby closing the open face in 2 to produce the 6-sep hypoelectronic cluster (Cp*Re)2CO2(CO)5B4H4 (5). These reaction outcomes are compared and contrasted with those previously observed for 5-sep (Cp*Cr2)2B4H8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.