Abstract

Muscarinic M2, M4, and M2-M4 chimera receptors were transiently expressed in HEK-293 tsA201 cells, and agonist-dependent internalization of these receptors and recycling of internalized receptors were examined by measuring the amount of cell-surface receptors as [3H]N-methylscopolamine (NMS) binding activity. Coexpression of a dominant negative form of dynamin (DN-dynamin,dynamin K44A) greatly reduced the agonist-dependent internalization of M4 receptors but not of M2 receptors, as was reported by Vögler et al. (J Biol Chem 273, 12155-12160, 1998).The agonist-dependent internalization of M2/M4-i3/M2 chimera receptors (M2 receptors with the i3 loop replaced by that of M4 receptors) was greatly reduced by co-expression of DN-dynamin as was the case for M4 receptors, whereas the agonist-dependent internalization of M4/M2-i3/M4 chimera receptors was hardly affected by co-expression of DN-dynamin as was the case for M2 receptors.Internalized M2/M4-i3/M2 receptors as well as internalized M4 receptors were shown to be recycled back to the cell surface after removal of agonists, whereas no recycling was observed for M4/M2-i3/M4 receptors as well as M2 receptors. These results indicate that the i3 loops of M2 and M4 receptors take a major role in their agonist-dependent internalization and recycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.