Abstract

In this paper we investigate whether the periodic structures on metal surfaces exposed to single ultrashort laser pulses can appear due to an instability induced by two-temperature heating dynamics. The results of two-temperature model (TTM) 2D simulations are presented on the irradiation of gold by a single 800 nm femtosecond laser pulse whose intensity is modulated in order to reproduce a small initial temperature perturbation, which can arise from incoming and scattered surface wave interference. The growing (unstable) modes of the temperature distribution along the surface may be responsible for the LIPSS (Laser Induced Periodic Surface Structures) formation. After the end of the laser pulse and before the complete coupling between lattice and electrons occurs, the evolution of the amplitude of the subsequent modulation in the lattice temperature reveals different tendencies depending on the spatial period of the initial modulation. This instability-like behaviour is shown to arise due to the perturbation of the electronic temperature which relaxes slower for bigger spatial periods and thus imparts more significant modulations to the lattice temperature. Small spatial periods of the order of 100 nm and smaller experience stabilization and fast decay from the more efficient lateral heat diffusion which facilitates the relaxation of the electronic temperature amplitude due to in-depth diffusion. An analytical instability analysis of a simplified version of the TTM set of equations supports the lattice temperature modulation behaviour obtained in the simulations and reveals that in-depth diffusion length is a determining parameter in the dispersion relation of unstable modes. Finally it is discussed how the change in optical properties can intensify the modulation-related effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call