Abstract

By using a remote plasma enhanced chemical vapor deposition system, we grow a silicon rich silicon nitride thin film on the surface of five different substrates: silicon wafer, fused silica, highly oriented pyrolytic graphite, muscovite mica and potassium chloride. By means of high-resolution transmission electron microscopy we studied the influence that each substrate has on the auto-formation of silicon quantum dots (≤4.2 nm) embedded in the grown film. We conjecture that the growth of the film is carried out by the formation of highly reactive intermediates that are chemisorbed on the substrate surface. We conclude proposing the hypothesis that the substrate surface profile has minimal influence on the growth of a silicon nitride thin film that can embed silicon quantum dots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.