Abstract

It has been suggested that uranium uptake and toxicity could be mediated by endocytosis and/or the type IIa sodium-dependent phosphate cotransporter (NaPi-IIa). The aim of this study was therefore to characterize in vitro the role of these two cellular mechanisms in the uptake and toxicity of low (200-3200 nM) and high (0.5 and 0.8 mM) concentrations of uranium, respectively. At low concentrations, uranium uptake in LLC-PK(1) cells was saturable (V(max) = 3.09 +/- 0.22 ng/mg protein) and characterized by a K(0.5) of 1022 +/- 63 nM and a Hill coefficient of 3.0 +/- 0.4. The potential involvement of endocytosis and NaPi-IIa in the uptake of uranium was assessed by the use of various drugs and culture conditions known to alter their relative activity, and (233)uranium uptake was monitored. Interestingly, the inhibitory effect of colchicine, cytochalasin D, phorbol 12-myristate 13-acetate, and chlorpromazine on endocytosis was highly correlated with their effect on uranium uptake, a relationship that was not true when the NaPi-IIa transport system was studied. Whereas the competitive inhibition of the NaPi-IIa by phosphonoformic acid (PFA) significantly decreased uranium uptake, this effect was not reproduced when NaPi-IIa inhibition was mediated by the replacement of extracellular Na(+) with N-methyl-D-glucamine. Uranium uptake was also not significantly altered when NaPi-IIa expression was stimulated in MDCK cells. More surprisingly, we observed by transmission electron microscopy that uranium cytotoxicity was dependent upon the extent of its intracellular precipitation, but not on its intracellular content, and was suppressed by PFA. In conclusion, our results suggest that low-dose uranium uptake is mainly mediated by absorptive endocytosis, and we propose PFA as a potential uranium chelator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.