Abstract

Oxidative stress has been suggested to induce granulosa cell apoptosis, which contributes to follicular atresia. However, the mechanism via which oxidative stress mediates granulosa cell apoptosis remains elusive. Therefore, the aim of this study was to elucidate the molecular mechanisms regulating oxidative stress‑induced granulosa cell apoptosis. The present study demonstrated that reactive oxygen species induced by H2O2 resulted in human granulosa COV434 cell apoptosis via the regulation of sirtuin1 (SIRT1)‑mediated p53 activity. Endogenous SIRT1 expression was alleviated by H2O2 treatment of COV434 cells in a time‑dependent manner. In addition, knockdown or inhibition of SIRT1 promoted H2O2‑induced poly(ADP‑ribose) polymerase (PARP) cleavage and p53 acetylation, which led to an increase in COV434 cell apoptosis. Treatment with H2O2 enhanced the expression levels of the p53‑dependent proteins, p53‑upregulated modulator of apoptosis (PUMA) and phorbol‑12‑myristate‑13‑acetate‑induced protein1 (PMAIP1), as well as those of p53; however, knockdown of p53 decreased cleaved PARP, PUMA and PMAIP1 expression levels induced by H2O2 treatment. Moreover, knockdown of PUMA or PMAIP1 attenuated the H2O2 induction of PARP cleavage and COV434 cell apoptosis. In conclusion, the present findings suggested that H2O2‑induced oxidative stress causes granulosa COV434 cell apoptosis via the upregulation of p53 activity by SIRT1 suppression, indicating a mechanistic role of the SIRT1/p53 axis in H2O2‑induced granulosa cell apoptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.