Abstract

Clozapine (CLZ) can improve both the positive and negative symptoms of treatment-resistant schizophrenia (TRS), which does not respond to typical antipsychotics. This suggests that elucidation of the pharmacological mechanism for CLZ could lead to further clarification of the pathophysiology of TRS. This study examined the effects of CLZ on phencyclidine (PCP)-induced hyperlocomotion and on the acute increases in glutamate levels that occur in the medial prefrontal cortex (mPFC) in order to test the hypothesis that CLZ effect is associated with the simultaneous enhancement of N-methyl-D: -aspartate (NMDA) and dopamine D(1) receptor-mediated neurotransmission. CLZ effect on PCP-induced hyperlocomotion and increases in glutamate levels were examined by using behavioral rating scores and in vivo microdialysis, respectively. CLZ and haloperidol (HAL) dose-relatedly attenuated PCP-induced hyperlocomotion, and concentration-relatedly blocked PCP-induced acute increases in glutamate levels in the mPFC, with the decrease in saline-induced locomotor activity induced by CLZ being much weaker than that induced by HAL. CLZ also blocked, in a dose-related manner, acute increases in glutamate levels in the mPFC that were induced by local perfusion with a competitive NMDA receptor antagonist, CPP, in this region. Although an enhanced blocking effect of the sub-threshold concentration of NMDA perfusion on PCP-induced acute increases in glutamate levels in the mPFC was noted after co-perfusion with a dopamine D(1) receptor agonist, SKF-38393, perfusion with SKF-38393 did not reverse the CLZ blocking of PCP-induced increases in glutamate levels. Therefore, CLZ may block PCP-induced acute increases in glutamate levels in the mPFC by an enhancement of the NMDA receptor-mediated neurotransmission that is not accelerated by an enhanced dopaminergic transmission via dopamine D(1) receptors. This blocking effect may partially explain the CLZ-induced attenuation of PCP-induced hyperlocomotion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call