Abstract
On the basis of sequence homology and structural similarities, metabotropic glutamate receptors (mGluRs), extracellular Ca2+-sensing receptor, gamma-aminobutyric acid type B receptor, and pheromone receptors are enlisted in a distinct family within the larger G protein-coupled receptor superfamily. When expressed in heterologous systems, group I mGluRs can activate dual signal transduction pathways, phosphoinositides turnover and cAMP production. To investigate the structural basis of these coupling properties, we introduced single amino acid substitutions within the second and third intracellular loops (i2 and i3) of mGluR1alpha. Wild-type and mutant receptors were expressed in human embryonic kidney 293 cells and analyzed for their capacity to stimulate both signaling cascades. Each domain appeared to be critical for the coupling to phospholipase C and adenylyl cyclase. Within i2, Thr695, Lys697, and Ser702 were found to be selectively involved in the interaction with Gq class alpha subunit(s), whereas mutation of Pro698 and the deletion Cys694-Thr695 affected only Gs coupling. Furthermore, the mutation K690A profoundly altered mGluR1alpha signaling properties and imparted to the receptor the ability to couple to the inhibitory cAMP pathway. Within i3, we uncovered two residues, Arg775 and Phe781, that are crucial for coupling to both pathways, since their substitution leads to receptor inactivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.