Abstract

We study the effect of the sample thickness in planar crack front propagation in a disordered elastic medium using the random fuse model. We employ different loading conditions and we test their stability with respect to crack growth. We show that the thickness induces characteristic lengths in the stress enhancement factor in front of the crack and in the stress transfer function parallel to the crack. This is reflected by a thickness-dependent crossover scale in the crack front morphology that goes from from multiscaling to self-affine with exponents, in agreement with line depinning models and experiments. Finally, we compute the distribution of crack avalanches, which is shown to depend on the thickness and the loading mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.