Abstract

A regulatory network of Sinorhizobium meliloti genes involved in adaptation to iron-limiting conditions and the involvement of the rhizobial iron regulator gene (rirA) were analyzed by mutation and microarray analyses. A constructed S. meliloti rirA mutant exhibited growth defects and enhanced H2O2 sensitivity in the presence of iron, but symbiotic nitrogen fixation was not affected. To identify iron-responsive and RirA-regulated S. meliloti genes, a transcriptome approach using whole-genome microarrays was used. Altogether, 45 genes were found to be jointly derepressed by mutation of rirA and under different iron-limited conditions. As expected, a number of genes involved in iron transport (e.g., hmuPSTU, shmR, rhbABCDEF, rhtX, and rhtA) and also genes with predicted functions in energy metabolism (e.g., fixN3, fixP3, and qxtAB) and exopolysaccharide production (e.g., exoY and exoN) were found in this group of genes. In addition, the iron deficiency response of S. meliloti also involved rirA-independent expression changes, including repression of the S. meliloti flagellar regulon. Finally, the RirA modulon also includes genes that are not iron responsive, including a gene cluster putatively involved in Fe-S cluster formation (sufA, sufS, sufD, sufC, and sufB).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.