Abstract

The temporal evolution of the stratospheric aerosol distribution in the tropical stratospheric reservoir after the eruption of Mount Pinatubo was observed from 1992 to 1995 by the HALOE instrument on the UARS satellite. Since the spatial gradient of aerosol loading is large at the boundaries of the tropical stratospheric reservoir due to the volcanic aerosols, the effect of the meridional circulation on the distribution is seen clearly. The mechanism for dispersal of aerosol in the lower stratosphere from the tropics into midlatitudes strongly depends on the phase of the equatorial zonal wind. The time‐latitude crosssections of the normalized distribution of aerosol on isentropic surfaces are used to observe the equatorial variation as well as change in meridional dispersal during the quasibiennial period. Observed tropical stratospheric winds are used with a simple analytical dynamical model to examine transport processes of tracers from the tropics during several phases of the quasibiennial oscillation (QBO) from 1992 to 1995. The Lagrangian meridional circulation in the tropics is consistent with the vertical and meridional velocities correlated with the QBO in the zonal wind. We find that vertical motion plays a crucial role in vertical and subsequent meridional transport. The pattern of meridional divergence derived from the vertical velocity is closely related to the observed HALOE aerosol distributions and their temporal development in the equatorial region. The westerly (easterly) shear phase of the QBO is associated with sinking (rising) motions at the equator and subsequent poleward (equatorward) transport in the lower stratosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call