Abstract

Liver tropism hampers systemic administration of adenovirus in gene therapy and virotherapy. In consequence, tumour targeting requires the combination of capsid modifications that abrogate liver transduction and redirect adenoviral vectors to tumour cells. Coxsackievirus and adenovirus receptor (CAR), integrins and heparan sulfate glycosaminoglycans (HSG) are receptors involved in adenovirus type 5 (Ad5) entry into cells. The in vitro and in vivo properties of Ad5 vectors unable to bind CAR, integrins and HSG with and without Arg-Gly-Asp (RGD) inserted at the HI loop of the fiber were studied. As was previously observed with CAR-ablated vectors, CAR and integrin double binding-ablated vectors transduced hepatocytes less efficiently in vitro but not in vivo. On the contrary, the role of HSG on Ad5 infectivity was evident in vitro only when CAR binding was abrogated, but the shaft mutation that ablated HSG binding on the background of a normal capsid was sufficient to abrogate liver transduction in vivo. The insertion of amino acids RGD at the HI loop in a shaft-mutated fiber only partially rescued integrin-mediated infectivity. These results indicate that the shaft mutation precluded HSG binding and affected the structure of the fiber. The insertion of ligands at the hexon or protein IX may be required to benefit from the fiber shaft mutation-detargeting properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.